红外传感器与催化燃烧传感器的区别

发布时间:2021-06-25 16:13:16   浏览量:1253
摘要:在监测可燃气体和易燃蒸气时,传感器起着关键作用,包括催化传感器和红外(IR)传感器等。而环境、响应时间和温度范围只是决定使用哪种技术最佳时要考虑的因素。 那么,催化传感器和红外(IR)传感器之间有什么差异呢?这两种技术为何各有利弊,以及如何知道哪种方法最适合不同的环境呢? 红外传感器 红外传感器技术基于以下原理:特定波长的红外(IR)光将被目标气体吸收。通

      在监测可燃气体和易燃蒸气时,传感器起着关键作用,包括催化传感器和红外(IR)传感器等。而环境、响应时间和温度范围只是决定使用哪种技术zui佳时要考虑的因素。

  那么,催化传感器和红外(IR)传感器之间有什么差异呢?这两种技术为何各有利弊,以及如何知道哪种方法适合不同的环境呢?

  红外传感器

  红外传感器技术基于以下原理:特定波长的红外(IR)光将被目标气体吸收。通常传感器内有两个发射器,它们产生红外光束:具有将被目标气体吸收的波长的测量光束和不会被吸收的参考光束。每个光束具有相同的强度,并通过传感器内部的反射镜偏转到光接收器上。在存在目标气体的情况下,参考光束和测量光束之间的强度差将用于测量存在的气体浓度。

  在许多情况下,红外(IR)传感器技术比催化燃烧技术具有许多优势,或者在可能损害催化燃烧传感器性能的方面(包括低氧气和惰性环境)中更加可靠。只是红外光束与周围的气体分子相互作用,使传感器具有不面临中毒或抑制威胁的优点。红外技术提供故障安全测试。这意味着,如果红外光束出现故障,则会向用户通知此故障。

  红外传感器非常适合于石油和天然气行业,可在易爆的低氧环境中检测甲烷,戊烷或丙烷,而这些环境中的催化燃烧传感器可能会遇到困难。

  但是,IR传感器并非是完.美的,因为它们只能线性输出目标气体。如果红外传感器对其他易燃气体响应,则目标气体将是非线性的。就像催化燃烧传感器容易中毒一样,IR传感器也容易受到严重的机械和高温冲击,并且也受压力变化的强烈影响。

  另外,红外传感器不能用于检测氢气,因此,我们建议在这种情况下使用催化燃烧或半导体传感器。安全的首要目标是选择合适的检测技术,以最大程度地减少工作场所的危害。我们希望通过清楚地识别这两个传感器之间的差异,可以提高人们对各种工业和危险环境如何保持安全性的认识。